
Implementation of the Programming Language Dino
– A Case Study in Dynamic Language Performance

Vladimir N. Makarov

Red Hat

vmakarov@gcc.gnu.org

Abstract

The article gives a brief overview of the current state of program-
ming language Dino in order to see where its stands between other
dynamic programming languages. Then it describes the current im-
plementation, used tools and major implementation decisions in-
cluding how to implement a stable, portable and simple JIT com-
piler.

We study the effect of major implementation decisions on the
performance of Dino on x86-64, AARCH64, and Powerpc64. In
brief, the performance of some model benchmark on x86-64 was
improved by 3.1 times after moving from a stack based virtual
machine to a register-transfer architecture, a further 1.5 times by
adding byte code combining, a further 2.3 times through the use
of JIT, and a further 4.4 times by performing type inference with
byte code specialization, with a resulting overall performance im-
provement of about 47 times. To put these results in context, we
include performance comparisons of Dino with widely used imple-
mentations of Ruby, Python 3, PyPy and JavaScript on the three
platforms mentioned above.

The goal of this article is to share the experience of Dino im-
plementation with other dynamic language implementors in hope
that it can help them to improve implementation of popular dy-
namic languages to make them probably faster and more portable,
using less developer resources, and may be to avoid some mistakes
and wrong directions which were experienced during Dino devel-
opment.

Categories and Subject Descriptors D.3.4 [Processors]: Inter-
preters

General Terms Languages, Performance, Algorithms

Keywords Dynamic Language, Language Design, Interpreters,
Optimizations, JIT

1. Introduction

Programming language Dino has a long history. Originally it was
designed, implemented, and used as a simple dynamically typed
scripting language in a small computer game company. During its
long life, the language and its implementation were dramatically
changed. The implementation was changed many times by using
new tools, new virtual machines, by adding new optimizations.
Therefore its development could be a good case study of dynamic
language implementation, simple, portable, and with a performance
competitive with JIT implementations of other popular dynamic
languages.

The first part of the article contains brief overview of the current
version of the programming language Dino. We describe the basic

design of the language, its type system and particular features such
as multithreading, heterogeneous extensible arrays, array slices,
associative tables, first-class functions, pattern-matching, as well
as Dino’s unique approach to class inheritance via the ‘use’ class
composition operator.

The second part of the article describes Dino’s implementation.
We outline the overall structure of the Dino interpreter and just-
in-time compiler (JIT) and the design of the byte code and major
optimizations. We also describe implementation details such as
the garbage collection system, the algorithms underlying Dino’s
data structures, Dino’s built-in profiling system, and the various
tools and libraries used in the implementation. Our goal is to give
an overview of the major implementation decisions involved in
a dynamic language, including how to implement a stable and
portable JIT.

The third part studies the effect of design choices and major
optimizations on Dino’s performance on x86-64, AARCH64, and
Powerpc64. We examine the choice to use a register-transfer virtual
machine instead of a stack-based design and the effects of byte code
combining, just-in-time compilation, and type inference with byte
code specialization.

The fourth part compares Dino’s performance with other pop-
ular dynamic language implementations, in order to better under-
stand the combined effect of all described optimizations. Perfor-
mance results are given for the same three platforms as in the pre-
vious part.

We conclude by giving possible directions of further research
based on Dino, whether by testing new optimizations or studying
ways to improve the JIT.

2. Language Overview

In this section we describe the current version of the Dino program-
ming language. This section does not aim to give a formal or com-
prehensive specification, and there is a possibility that the omitted
details might raise questions for the reader. However, our goal is to
give a high-level language overview in order to see how the features
of the language compare to those of similar dynamic languages and
to understand how the implementation methods used for Dino are
applicable to other languages.

The best way to proceed will be to give a series of small example
programs. To start with, the following is a Dino implementation of
the Sieve of Eratosthenes:

1. val SieveSize = 8191;
2. var i, prime, k, count = 0, flags = [SieveSize : 1];
3. for (i = 0; i < SieveSize; i++)
4. if (flags[i]) {
5. prime = i + i + 3;
6. k = i + prime;
7. for (;;) {
8. if (k >= SieveSize)

Dino Implementation 1 2016/4/5

9. break;
10. flags[k] = 0;
11. k += prime;
12. }
13. count++;
14. }
15. putln (count);

An initial design goal was to make Dino resemble C whenever
reasonable in order to reduce the learning curve for programmers
familiar with C. According to a commonly used classification of
programming languages, Dino can therefore be thought of as a
curly-bracket language.

Variables in Dino can hold values of any type, so Dino is a
dynamically typed language. The scalar value types include char
(Unicode character), integer (64-bit signed integers), long (multi-

precision integers) and float1. Dino types are themselves values2.
Variables in Dino should be declared (lines 1 and 2). The dec-

laration scope of a variable starts from the declaration point and

finishes at the end of the block containing the declaration3. It can
finish earlier if the identifier is redeclared in the block. The dec-
laration scope includes nested blocks but excludes scopes of other

declarations with the same identifier in the nested blocks4.
If a variable is declared by a val declaration (line 1), then it is a

constant whose value cannot be changed.

2.1 Array, Slices, and Tables

The structured value types include arrays. In the above example,
the variable flags holds an array of integers of size SieveSize.
Each element of the array is initialized to integer value 1 (line
2). Different elements of an array can hold values of different
types. Arrays are mutable by default, i.e. their elements can be
modified, removed, and new elements can be inserted. An array
can be transformed to become immutable by a special operation.

Slices of an array can be referenced and be used as operands of
some operations. For example, the Sieve of Eratosthenes program
from the previous section can be rewritten using slices:

1. val flags = [SieveSize : 1];
2. var i, prime, count = 0, SieveSize = 8191;
3. for (i = 0; i < SieveSize; i++)
4. if (flags[i]) {
5. prime = i + i + 3;
6. flags[i + prime:SieveSize:prime] = 0;
7. count++;
8. }
9. putln (count);

Line 6 in the above example contains an array slice. This
slice refers to elements at indices starting from i+prime up to
Sievesize (exclusive) with step prime.

While array elements are referenced by integer indices, Dino
also includes the associative array type table whose elements are
referenced by keys that can be arbitrary values.

Table values can be built using the tab [] constructor:

1. tab ["string key" : 10.0
2. [1, 2] : 2,
3. tab [3, 4] : [1, 2]]

1 Dino floats are IEEE 754-1985 double precison floating point numbers.
2 The type of type values is denoted by the keyword type.
3 A block is a series of statements and declarations enclosed in curly-
brackets.
4 Scope rules in Dino were originally more relaxed, permitting an identifier
to be referenced before its declaration, but they were changed to the current
ones when an interactive REPL environment was implemented.

The table element with value 10.0 is stored under a string key,
while an array and another table are used as keys for the table
elements in lines 2 and 3 respectively. As in the case of arrays,
tables can be mutable or immutable, and elements of mutable tables
can be modified, added and removed.

2.2 Functions, Closures, and Fibers

Functions in Dino are first class values. In other words, they can
be assigned to variables, passed as parameters, returned as results
from other functions and be stored within data structures. Here are
some example function declarations and function calls:

1. fun even;
2. fun odd (i) {i == 0 ? 0 : even (i - 1);}
3. fun even (i) {i == 0 ? 1 : odd (i - 1);}
4 putln (odd (1000000));
5.
7. filter (fun (a) {a > 0;}, v);
8. fold (fun (a, b) {a * b;}, v, 1);
9.
10. fun incr (base) {fun (incr_val) {base + incr_val;}}

According to Dino scope rules, a declaration should be present
before any usage of the declared identifier. Thus, in the case of mu-
tually recursive functions, we need to include a forward declaration.
Lines 1-4 of the above example provide an illustration.

Lines 7 and 8 provide an example of the use of anonymous
functions. We pass the anonymous functions as parameters to the

filter and fold functions5.
Function values in Dino always exist within a context, as the

functions can refer to outside declarations. A function value con-
sidered along with its context is called a closure. The last line in the
above example illustrates the use of closures. The function incr re-
turns an anonymous function which in turn returns the sum of its
parameter incr val and the parameter base given to the corre-
sponding call of incr.

A fiber in Dino is a function which executes concurrently from
its point of invocation. A fiber call being executed is called a thread.
Here is an example:

1. fiber t (n) {for (var i = 0; i < n; i++) putln (i);}
2. t(100); // the following code will not wait for t finish
3. for (var i = 0; i < 1000; i++) putln ("main", i);

To synchronize threads, Dino provides a basic wait statement:

wait (cond) [stmt];

Thread is concurrent but not parallel. In other words, the multi-
threading is implemented by so-called green threads, with the Dino

interpreter alternately executing statements from different threads6.
Simple statements, e.g. statements that do not contain function
calls, are atomic, i.e. cannot be interrupted by another thread.

2.3 Classes and Objects

Some programming languages attempt to unify the functional and
object-oriented approaches. For example, in Scala a function is
just another kind of object, and a function call invokes the method
apply on the corresponding object.

Dino takes a bit of a different approach to unifying the two con-
cepts. A class in Dino is defined as a special kind of function which

5 Functions filter and fold are defined in the standard Dino environment.
6 The multithreading system in Dino has existed without any change since
its very first version, as the original application of Dino (scripting dinosaur
movements in a simulation) did not require any more complex form of
parallelism. There are plans to make threads parallel, e.g. by implementing
them as OS-level threads. This will likely change the semantics of Dino
threads in the future.

Dino Implementation 2 2016/4/5

returns an entity called a block instance7 representing the created
object. The inner declarations of the block instance are publicly
visible by default. Here are some example class declarations:

1. class num (i) {fun print {put (i);}}
2. class binop (l, r) {
3. fun print_op;
4. fun print {l.print(); print_op (); r.print ();}
5. }

Line 1 contains the declaration of a class num with one function
print and one public variable i whose value is initialized by the
call to the class. Lines 2 to 5 contain the declaration of an abstract
class binop with two variables l and r, a defined function print
and a function print op which declared but not yet defined.

Dino has a powerful class/function composition operator use
which can be used to inlay declarations from one class into an-
other. This operator can be used to emulate inheritance (including
multiple inheritance), traits, and dynamic dispatching.

Here is a continuation of the above example:

6. class add (l, r) {
7. use binop former l, r later print_op;
8. fun print_op {put (" + ");}
9. }

Line 7 contains a use-clause which inlays the declarations (func-
tions and variables) from class binop, making them available
within the scope of add. The former-clause overrides the l and
r variables from binop with the l and r variables defined earlier
in the declaration of add. Likewise, the later-clause overrides the
print op function inlaid from binop with the print op function
defined later in the declaration of add.

The use-clause provides a safe and powerful way to support
object oriented programming. It has the following semantics:

1. Declarations from the class mentioned by the use-clause are
inlaid into the current class.

2. Declarations from the current class that occur before the use-
clause override inlaid declarations mentioned in the former-
clause.

3. Declarations from the current class that occur after the use-
clause override inlaid declarations mentioned in the later-
clause.

4. Declarations in the current class must match any inlaid declara-

tions that they override.8

5. A declaration from the original class mentioned by the use-
clause can be renamed and thus made available in the current
class instead of simply being overridden.

A class that references another class via a use-clause becomes a
subtype of the referenced class. The subtyping relation is transitive.
To test subtyping of a class or object, the standard function isa can

be used9:

1. isa (add, binop);
2. isa (add (num (1), num (2)), binop);

Dino provides syntactic sugar for declaring a singleton, which
functions as an abbreviation for declaring an anonymous class,

7 We prefer to use the term block instance instead of the widely used ‘acti-
vation record’ or ‘stack frame’ as an activation record is usually allocated
on the call stack, whereas a Dino block instance is allocated in the heap.
8 An exact definition of what it means for two declarations to match is not
given here. An example of matching declarations is a pair of functions with
the same number of parameters.
9 Pattern matching can also be used for this purpose.

creating an object of the class and assigning it to a variable declared
using val:

1. obj coords {
2. var x = 450, y = -200;
3. }

2.4 Pattern Matching

Pattern matching is a useful instrument for distinguishing and de-
composing values and extracting their parts into variables. Dino’s
pattern matching mechanism can be used in a variable declaration
or in a pmatch-statement.

The following is an example of pattern matching in a declara-
tion:

1. try {
2. var [a, b, 2, ...] = v;
3. ...
4. } catch (patternmatch) {
5. putln ("your assumption is wrong");
6. }

The declaration on line 2 checks that the value of v is an array
of at least 3 elements and that the third element of v is equal to 2.
If this is not the case, an exception will occur. The values of the
first and second elements of v will be assigned to newly declared
variables a and b respectively.

The following is an example of pattern matching in a pmatch-
statement:

1. pmatch (v) {
2. case [...]: putln ("array"); continue;
3. case [a, ...]:
4. if (a == 0) break;
5. putln ("array with non-zero 1st element");
6. case node (v) if v != 0:
7. putln ("object of class node with nozero value");
8. case _: putln ("anything else");
9. }

The pmatch-statement tries to match a value with the patterns
in the case clauses and executes the code corresponding to the
first matched pattern. The scope of variables defined in the pattern
extends to statements within the case clause. A continue statement
within a case clause means that pattern matching should resume
and continue to the subsequent case clauses. A break statement
exits the pmatch statement. There is an implicit break at the end
of each case clause.

The above example illustrates the possibilities of the pmatch
statement, but the program used for the example is artificial. The
following is a more realistic program using classes and pattern
matching:

1. class tree {}
2. class leaf (i) {use tree;}
3. class node (l, r) {use tree;}

4. fun exists_leaf (test, t) {
5. pmatch (t) {

6. case leaf (v): test (v);
7. case node (l, r):
8. exists_leaf (test, l) || exists_leaf (test, r);

9. }
10. }

11. fun has_odd_leaf (t) {
12. exists_leaf (fun (n) {type (n) == int && n % 2 == 1;}, t);

13. }

2.5 Standard Environment

The Dino standard environment contains a variety of built-in func-
tions (input/output, higher order functions, regexp functions, func-
tions for array/table manipulations, etc.) and classes (mostly de-
scribing various exceptions).

Dino Implementation 3 2016/4/5

This environment is small in comparison with the standard
libraries of popular dynamic languages. The creation of a full set
of standard libraries requires a lot of efforts and has not been a
priority as Dino was more of a research project for a long time. That
said, there is one unique feature in the Dino standard environment:
a predefined class for the creation of parsers for programming
languages or natural languages.

The class implements an enhanced Earley parser algorithm
with simple syntax directed translation. It can parse according to
ambiguous grammars, producing either a compact representation
of all possible parse trees or a minimal cost parsing tree when
costs are assigned to the grammar rules. The parser can perform
syntax recovery, finding the minimal number of ignored tokens
which produces a correct abstract syntax tree (AST). It is also fairly
fast, being capable of parsing about 250,000 lines of C language

code per second on modern CPUs10.
Here is an example where the Earley’s parser built into Dino is

used to parse a tiny programming language:

expose yaep.*;
val grammar = "TERM ident=301, num=302, if=303,

then=304, for=305, do=307, var=308;
program = program stmt # list (0 1)

stmt = ident ’=’ expr ’;’ # asgn (0 2)
| if expr then stmt else stmt # if (1 3 5)

| for ident ’=’ expr expr do stmt # for (1 3 4 6)
| ’{’ program ’}’ # block (1)
| var ident ’;’ # var (1)

| error
expr = expr ’+’ factor # plus (0 2)

factor = factor ’*’ term # mult (0 2)
term = ident # 0

| ’(’ expr ’)’ # 1";

val p = parser (); // create an Earley parser
p.set_grammar (grammar); // set grammar

fun syntax_error; // forward decl of error reporting func
val abstract_tree = p.parse (token_vector, syntax_error);

3. Implementation

Unfortunately, the article size does not permit a description of all
design decisions, algorithms and optimizations in full detail. Only
a high level overview is given, and only some important elements
of the implementation are described in more detail.

Figure 1 represents the general structure of the current Dino
implementation[Makarov] and the flow of data through it.

Dino interpreter can be used in one of two modes. The first
mode is a read-eval-print loop (REPL) where a completed state-
ment undergoes all processing stages including execution. The sec-
ond mode is the standard batch mode, where the interpreter first
processes all program files to generate byte code of the entire pro-
gram and then executes the byte code. Program byte code can be
saved in a readable form, modified and read back for execution.

The interpreter includes a function-level JIT compiler which is
implemented with the aid of a C compiler.

The Dino program can load and execute PIC object files created
from C code using a foreign function interface.

The interpreter uses a memory heap with garbage collection.
The heap can be automatically extended by demand. The interpreter
performs a simple escape analysis to transform heap allocations
into stack ones. The garbage collector uses a combination of the
mark-and-sweep and the fast mark-and-copy strategies to prevent
heap fragmentation and decrease program memory requirements
[GCH].

10 The implementation of Earley’s parser used in Dino achieves 255,700
lines per second when parsing a preprocessed 67,000 line C file on 4.2GHz
Intel i7-4790K. Peak memory usage for parser internal data was about
3.9MB.

The first implementation of associative tables in Dino was based
on classical hash tables with buckets. The implementation was later

changed to resizable hash tables without buckets11. Conflict reso-
lution is achieved by secondary hashing. Such an approach permits
to decrease pointer chasing and results in more compact hash ta-
ble representations and better data locality. With the right choice of
maximal load factor for the hash table, the implementation using
secondary hashing compared to the implementation using buckets

can be 1.5 times faster on modern processors12. The hash table im-
plementation based on secondary hashing was later adapted for use
in the GCC compiler.

The Dino interpreter employs numerous optimizations to im-
prove performance. Below we discuss optimizations which are im-
portant from the performance point of view or widely described in
research literature.

3.1 Byte Code Dispatch

Although a lot of articles and discussions about dynamic language
implementations are focused on byte code dispatch, in our expe-
rience the choice of dispatch method was found to be relatively
unimportant for the performance of the Dino implementation.

In the direct threaded code method, each byte code instruction
contains the address of the code responsible for execution of the
next byte code instruction [Bell] [Ertl]. For example, the Ruby
VM uses direct threaded code by default [Sasada]. Although the
code required for dispatch is very simple (read the address and
jump to it), implementing the direct threaded strategy requires a
nonstandard extension to the C language which allows labels to
be treated as values [GCC]. The use of this extension prevents the
compiler from performing some optimizations on the interpreter
code (e.g. predictive commoning).

The direct dispatch method is based on a standard C switch
statement. Each case of the switch statement contains an imple-
mentation of a different byte code instruction. Dino implementation
experience shows that a proper direct dispatch implementation is
more efficient on modern architectures. By ‘proper’, we mean that
the compiler should be forced to generate optimized code for the
switch statement if the number of all byte code intructions is less

than 25613. The optimization results in the code for direct dispatch
being compiled to a number of machine instructions comparable to
that of the machine code for direct threaded dispatch.

To take advantage of hardware branch prediction, some authors
proposed to replicate instructions or to make a direct switch at the
end of each code responsible for executing a byte code instruction
[Casey]. This might work well when we have a small benchmark
that takes advantage of the hot path, but in most real programs the
bytecode will generally have different instructions adjacent to one
another. The larger and more complex the benchmarks, and the
more different types of byte code instructions the VM provides,
the worse this approach will perform. The performance rapidly
becomes worse than that of direct dispatch.

In early Dino implementation, the use of a proper direct dis-
patch implementation improved code performance for a simple
loop benchmark up to 3% (on a modern x86-64 architecture) com-
pared to the next-best direct threaded dispatch method. Unfortu-

11 The hash function used in Dino is based on MurMur hashing [Appleby].
12 Both hash table implementations provide the same functionality and
approximately the same overall table sizes and rate of growth. Hashing
benchmarks from the old version of the computer language shootout were
used for the comparison [Benchmarks].
13 For example, it is possible to force the GCC compiler to omit range
checking and zero extension of the opcode value. The resulting code for
x86/x86-64 has less than half the instructions compared to the code gener-
ated for a switch statement by default.

Dino Implementation 4 2016/4/5

Figure 1. Overall Dino data flow

nately, the latest Dino implementation uses more than 256 byte
code instructions. Therefore we started to use the direct threaded
code method as the best possible dispatch method for such number
of byte code instructions.

A much greater performance improvement can be reached by
focusing on other issues than the choice of byte code dispatch. The
most important aspect of the design is choosing the right byte code
architecture for efficient execution.

3.2 Virtual Machine and Bytecode Design

Stack-based (SB) virtual machines (VMs) are a fairly popular de-
sign for implementation of dynamic language interpreters. For
example, the Ruby VM uses a stack-based architecture [Sasada]
[Shaughnessy]. Stack based byte code is compact and simple.

The previous implementation of Dino VM used a stack-based
design as well. The current implementation is based on a register
transfer language (RTL). Changing the virtual machine architec-
ture from a stack-based to a register-transfer-language VM archi-
tecture improved code performance up to 3 times, which is bigger

than the speedup reported in [Shi]14.
The main advantage of RTL is a reduced number of instruc-

tions, as one RTL instruction can correspond to 3 or more SB byte
code instructions. In many cases, the reduced number of instruc-
tions decreases the overhead of byte code dispatch and reduces the
amount of operand shuffling and type checking. Moreover, there is
greater scope for applying compiler optimizations to the bytecode
interpreter itself if it is based on an RTL rather than an SB design.

14 There are many RTL design details which could influence performance
and may account for the difference in speedup. For example, the addressing
system in Dino bytecode allows an instruction to address both local and
temporary variables as well as variables in global scope.

The benefit of RTL is even greater when we take into account
the ability to perform optimizations on the byte code, including
instruction combining, instruction specialization, and colour based
variable allocation. These optimizations are very difficult or even
impossible to implement for SB virtual machines.

The current Dino byte code format includes multi-operand in-
structions with 1-5 operands (usually 3), control flow instructions
(blocks, branches, calls, etc.), as well as instructions representing
declarations such as vdecl (variable declaration) and fdecl (func-
tion, class, and fiber declarations).

Dino byte code has two representations: an in-memory format
for execution and a human-readable representation which can be
output, modified, and input back by the interpreter for further
execution.

The Dino code

var i, n = 1000;
for (i = 0; i < n; i++);

is compiled to byte code which includes the following segments
(given in human-readable representation):

0 block fn="ex.d" ln=1 pos=1 next=730 vars_num=29 tvars_num=3
...

372 vdecl ... ident=i ident_num=268 decl_scope=0 var_num=27
373 vdecl ... ident=n ident_num=269 decl_scope=0 var_num=28

...
788 ldi ... op1=28 op2=1000 // 28 <- i1000
789 ldi ... next=791 op1=27 op2=0 // 27 <- i0

790 btltinc ... next=792 op1=27 bcmp_op2=28 bcmp_res=29 pc=790
791 btlt ... op1=27 bcmp_op2=28 bcmp_res=29 pc=790

792 bend ...

Dino Implementation 5 2016/4/5

3.3 Optimizations

Choosing the right byte code representation is crucial, but there
are other techniques which are important for attaining good perfor-
mance.

3.3.1 Byte Code Combining

Reducing the number of executed instructions provides a per-
formance advantage, due to reduced dynamic dispatch overhead
and an increased scope for applying compiler optimizations when
building the Dino bytecode interpreter. The use of RTL representa-
tion is one way of achieving this.

The same result can also be achieved by creating new bytecode
instructions and using them to replace frequently executed chains
of operations. Such an optimization is performed by the Dino
interpreter. An analogous approach can be found in [Abdelrahman],
where this optimization is called concatenation, or in [Casey],
where it is called combining instructions into superinstructions.

The following example illustrates how the Dino interpreter
transforms byte code corresponding to an empty for loop:

label: addi op1, op1, i1; lt res, op1, op2; bt res, label =>
label: addi op1, op1, i1; blt res, op1, op2, label =>
label: btltinc op1, op2, i1, res, label

Byte code combining improves the performance of the model
benchmarks described in section 4 by about 1.5 times.

3.3.2 Pure Function Calls

A function is called pure if it has no side effects and its result always
depends only on its argument values. When a pure function is called
many times with the same arguments, we don’t need to calculate its
result again.

Dino interpreter can save values of arguments and correspond-
ing results of pure function calls and then reuse the results instead
of performing the calculations again. This optimization can im-
prove the performance of some benchmarks such as factorial or
Fibonacci by an order of magnitude.

3.3.3 Just-in-time Compilation

Performance of frequently executed code can be improved by just-
in-time compilation (JIT) to machine code. There are a number of
approaches to selecting which unit of code to compile. The most
frequently used approach is trace-based selection. Examples of
trace-based JIT implementations include the PyPy implementation
of Python and most widely used JavaScript implementations. JIT
compilation can be implemented through a specialized JIT frame-

work (e.g. JVM15) or by using more general compiler frameworks
such as LLVM or the GCC JIT plugin [Lattner] [Malcolm].

The Dino interpreter uses function-level JIT. Function compi-
lation is triggered by the first call. The function’s byte code is
translated into C function code. For each type of byte code instruc-
tion there is a corresponding C inline function. When building the
Dino interpreter, these functions are copied to a C-preprocessed
file, which is included in the generated C code during JIT com-

pilation16. Thus, the C translation of a function’s byte code con-
sists mostly of calls to these functions. A C compiler is called with

15 If JVM is used for the implementation, the bytecode obviously has to be
Java bytecode.
16 The C inline functions implementing the byte code instructions are de-
clared static. Thus, GCC does not optimize or generate separate machine
code for these functions; they are inlined only if they are used. This con-
siderably increases the speed of JIT compilation. Another important factor
that increases the compilation speed is the fact that the preprocessed file
contains only declarations that are used by the inline functions, rather than
the full set of declarations from the Dino interpreter.

the generated C code provided through a UNIX pipe. The C com-
piler produces a position independent code (PIC) object file which

is stored in the operating system’s standard temporary directory17.
After successful compilation, the interpreter loads the object file
and calls the compiled function.

This approach has many advantages. First of all, it results in a
simple and portable JIT implementation. In the Dino interpreter,
the JIT implementation required less than 100 new lines of C code,
and can be used with any native C compiler. As the C language
has a stable and well-defined standard, Dino’s portable JIT imple-
mentation will continue to work in the future. On the other hand, if
we had used the special-purpose interfaces provided by LLVM and
GCC for JIT compilation, we would potentially need to update the
interpreter in order to be compatible with future compiler versions.

Machine code generation by passing a C source file to the
GCC frontend gives only a slight performance penalty compared

to generation using the GCC JIT plugin18. In fact, JIT compilation
of a small Dino function takes only about 50-70ms using GCC with

-O3 on modern Intel CPUs19.

3.3.4 Type-inference and Byte code Type Specialization

Dino is a dynamically typed programming language. Nevertheless,
the types of many expressions and operands can be recognized
during compilation time.

Unfortunately, even the peak optimization modes of industrial
C compilers used for JIT are not powerful enough to figure out the
types of byte code operands and to remove unnecessary operand
type checking.

Type recognition (inference) with byte code specialization can
help significantly to improve JIT performance. For example, when
we know the types of operands, byte code specialization can trans-
form the general add instruction into an integer variant iadd or
a floating point variant fadd. On our model benchmark, qualita-
tive byte code specialization improves JIT performance about 4.5
times. With the addition of combined and specialized instructions,
the number of different byte code instructions in Dino is 254.

The type inference algorithm in Dino consists of the following
major steps:

1. Building an all-program control flow graph (CFG) consisting
of basic blocks and control flow edges connecting them.

2. Calculating available results of byte code instructions – this is
a forward data-flow problem on the CFG.

3. Using the availability information, building def-use chains con-
necting possible operands and results of byte code instructions
and variables.

4. Calculating the types of byte code instruction operands and
results – this is a forward data-flow problem on the def-use
graph.

This algorithm is capable of recognizing the types of different
usages of a variable even if the variable holds values of different
types during an execution. This is a major difference from type
inference in statically typed languages.

Dino has a number of language features and edge cases (such
as higher order functions, closures, threads and the possibility of
accessing an uninitialized variable) that make comprehensive type

17 These days, UNIX systems usually store their temporary directory in
memory.
18 Experiments with the JIT plugin benchmark from GCC’s testsuite show
that compilation using the GCC JIT plugin is about 20% faster than com-
piling from source code on a Xeon E5-2697 v3 machine.
19 A heapsort function was used for the measurement on a Xeon E5-2697
v3 machine.

Dino Implementation 6 2016/4/5

inference difficult. Therefore we do not recognize all operand types
which it is theoretically possible to recognize.

3.3.5 Code Reuse in Class Composition

A naive implementation of the class composition operator use that
duplicates declarations can create a lot of additional code. There-
fore special attention during the implementation of Dino and the
design of its byte code was paid to avoiding this problem. In fact,
no code duplication is produced by the current Dino implementa-
tion of operator use. Byte code corresponding to a function defined
in one class and inlaid into another class is always reused.

3.3.6 Optimization Hints

After analyzing his program’s behaviour, the programmer usually
has the best knowledge about what should and should not be opti-
mized. Therefore Dino allows the programmer to attach optimiza-
tion hints to functions. Currently, Dino defines hints to request in-
lining, JIT compilation, or pure function optimization.

Let us look at how optimization hints can be used to tune
the performance of the ‘meteor-contest’ benchmark from the new
version of the computer language shootout [Meteor]. Using the
built-in Dino profiler (option -p), we obtain the following output:

** Calls *** Time **** Name *********************************
761087 0.43 -- search1: "meteor.d": 229

561264 0.07 -- ctz: "meteor.d": 28
1260 0.01 -- GoodPiece: "meteor.d": 37
...

0.51 -- All Program

We know that ctz is a small function and by inlining it we can
remove significant call overhead. Function search1 is larger, and
it may be better to compile it into native code using the JIT com-
piler. After adding hints !inline and !jit to the corresponding
functions, we obtain the following profiler output:

** Calls *** Time **** Name *********************************

761087 0.15 -- search1: "meteor.d": 229
...

0 0.00 -- ctz: "meteor.d": 28
...

0.17 -- All Program

3.4 Used Tools and Libraries

The development of dynamic languages is usually an ongoing pro-
cess. Thus, it is important to develop tools that make it easier to im-
plement and modify the language interpreter. The COCOM toolset
provides several tools that are used by the Dino implementation.

The most useful one is Sprut, a compiler of internal representa-
tion (IR) descriptions. The description is given in an object oriented
format. The Sprut compiler generates code to create, access, mod-
ify, traverse, read and write the described IR format. Additionally,
in debug mode Sprut can generate code to check constraints and
relations given in the IR description.

There are four IR descriptions included in the Dino implemen-
tation. The first is a high-level IR used for semantic checking. The
second is the Dino bytecode format. The third format is a part of
the foreign function interface and is used to specify run-time data
which should be visible to external C functions. The last format
describes all run-time data used by the Dino interpreter.

The following are some excerpts from the semantic IR descrip-
tion:

...
%abstract ir_node :: %root;
%abstract generic_pos :: ir_node
%other

pos : position_t
;

%abstract expr :: generic_pos;
%abstract operation :: expr;
%abstract binary_operation :: operation
%other
left_operand, right_operand : expr

;
%abstract unary_operation :: operation
%other
operand : expr

;
mult :: binary_operation;
typeof :: unary_operation;
...

The following are excerpts from the bytecode description:

...
%abstract icode :: %root;
%abstract bcode :: icode
%other
next : bcode
info : %root

;
%abstract op1 :: bcode
%other
op1 : int_t

;
%abstract op2 :: op1
%other
op2 : int_t

;
%abstract op3 :: op2
%other
op3 : int_t

;
%abstract op3i :: op3;
add :: op3;
addi :: op3i;

Coding a parser manually can complicate language develop-
ment. Therefore the Dino parser is implemented using a parser
generator called Msta. Msta is a superset of YACC/Bison, sup-
porting LALR(k)/LR(k) grammars with any fixed k ≥ 0. Msta
also includes more sophisticated error recovery algorithms and im-

plements many useful optimizations20. Msta generates about 25%

faster parsers than Bison21.
The third COCOM tool used by Dino is Shilka, a generator

of fast keyword recognizers. There are several components of the
Dino implementation that need to perform recognition of reserved
identifiers, e.g. Dino keywords, bytecode instruction names, and
bytecode instruction fields. Shilka’s functionality is analogous to
that of the GNU gperf package but its implementation uses minimal
pruned O-tries. This approach makes Shilka up to 40% faster than

gperf22.
The COCOM toolset also includes a library called Ammu-

nition. This library contains different packages useful for com-
piler/interpreter implementations, such as source position handling,
error reporting, memory allocation handling, hash tables, sparse
sets, Earley parser etc. The Dino implementation actively uses most
of these.

20 Msta can extract regular or LALR portions of an LR grammar and
generate the corresponding portion of the parser as a DFA or LALR stack
machine.
21 When a preprocessed 67,000 lines C file is parsed on 4.2GHz Intel i7-
4790K, Msta is about 26% and 36% faster than Bison and Byacc corre-
spondingly.
22 Shilka on i7-4790K was 38% faster than gperf when recognizing 38
million C language keywords out of 120 million identifiers. The sequence
of identifiers was taken from a large C source file.

Dino Implementation 7 2016/4/5

Additionally, the Dino implementation uses the GMP (multi-
precision integer arithmetic), iconv (different encodings support),
and ONIGURUMA regex libraries.

4. Effect of implementation decisions and

optimizations

One of the reasons for wide adoption of dynamic languages is the
high-level nature of their operation. Usually, performance of low-
level operations is the weak point of dynamic language implemen-
tations.

Thus, we have chosen a benchmark which allows us to study the
performance of low-level operations. The nested loops benchmark
from the old version of the computer language shootout could
serve well for this purpose [Benchmarks]. The Dino version of this
benchmark consists of the following code:

fun main {
var n = argv [0] < 1 ? 1 : int (argv[0]);

var a, b, c, d, e, f, x = 0;

for (a = 0; a < n; a++)

for (b = 0; b < n; b++)
for (c = 0; c < n; c++)

for (d = 0; d < n; d++)
for (e = 0; e < n; e++)
for (f = 0; f < n; f++)

x++;
putln (x);

}
main ();

We ran this benchmark using different Dino VMs and optimiza-
tions on three platforms: x86-64, AARCH64, and Powerpc64. The
machines used for testing were a 4.2GHz Intel 4790K, a 2.4Ghz
Applied Micro AARCH64 X-gene, and a 3.2GHz Power8 running
Linux Fedora Core 21. Version 4.9.2 of GCC was used for JIT com-
pilation. Each test was run 3 times on an unloaded machine and the
minimal time was taken. The same command line argument (25)
was passed to the Dino script in all runs. Table 1 contains the CPU
times of different runs of the benchmark in seconds.

Intel Applied Micro IBM
Haswell X-gene Power8

Stack based VM 6.51 34.23 24.99

RTL VM 2.12 13.08 8.84

The above + code combining 1.38 6.92 4.69

The above + JIT 0.61 2.13 2.20

The above + type inference 0.14 0.24 0.11
and byte code specialization

Table 1. Performance effect of design decisions and optimizations
(CPU time given in seconds).

5. Comparison with a few dynamic language

implementations

To demonstrate overall Dino performance in comparison with pop-
ular implementations of Ruby, Python and Javascript on a wider
set of benchmarks, a subset of the old version of the computer lan-
guage shootout was used [Benchmarks].

This subset includes the following benchmarks:

• loop – execution of empty loop body.

• hash – associative table operations.

• fact – recursive factorial function.

• fib – recursive Fibonacci function.

• except – exception handling.

• method – object method calls.

• object – object instantiation.

• sieve – Sieve of Eratosthenes algorithm.

• sort – sorting using the heapsort algorithm.

• stat – calculation of statistical moments.

• random – random number generation.

• thread – passing data from a producer thread to a consumer
thread.

• start – an empty program that does nothing.

• compile – a program that consists of a very long series of
assignment statements.

Test machines used to run the benchmarks were a 3.4GHz i5-
4670 (x86-64 Haswell), a 2.4GHz Applied Micro X-gene (AARCH64),
and a 3.5GHz Power7 (Powerpc64) running Linux Fedora Core 21.

Language implementations used for the comparison include
the Python-3.3.x interpreter, the Ruby-2.0.x interpreter, and the
JavaScript-1.8.x SpiderMonkey and TraceMonkey JITs. Results for
the PyPy-2.2.x trace JIT for Python and the Scala-2.10.x JVM JIT
are given only for x86-64 as these systems are not yet implemented

on the AARCH64 architecture23. The absence of results for PyPy
on Powerpc64 is due to the same reason. Finally, although Scala
and the JVM are implemented on Powerpc64, unavailability of
Scala on the machine used for testing prevented us from obtaining
the corresponding results.

Tables 2, 3, and 4 contain benchmark execution times on x86-
64, AARCH64, and Powerpc64 platforms respectively. All times
are scaled relative to the execution time of the Dino version of the
benchmark program.

The best results for the Dino version of the factorial and Fi-
bonacci benchmarks were achieved by using pure-function opti-
mization. The best result for the Dino version of the random num-
ber generator benchmark was achieved by using function inlining.

Results for some JavaScript benchmark programs are absent
because the language does not support features needed for their
implementation, or because JavaScript versions of these benchmark
programs could not be found. On AARCH64 the result for the
JavaScript ‘hash’ benchmark is given with JIT disabled, as JIT-
enabled execution failed.

Scala results for the ‘compile’ benchmark are absent, as Scala
failed to compile it.

6. Conclusion and Perspectives

There are many venues for future research on Dino. The effect
of new optimizations (such as improved type inference or fast
variable allocation using a linear scan algorithm [Poletto]) can be
investigated. We also have plans to use Dino to research various
JIT approaches. One way of improving JIT can be achieved by
maintaining a C compiler process (or a pool of compiler processes)
on standby in order to avoid the overhead of starting up a compiler
during JIT compilation of each function.

A very important research goal is to find improved ways of
implementing JIT based on GCC, as it is the most portable compiler

infrastructure currently available24. It is fairly reasonable to doubt

23 This can be considered an illustration of the difficulties of porting dedi-
cated JIT systems to a new architecture.
24 GCC-5.0 includes support for 48 targets in its public repository, while
LLVM-3.6 supports only 12 targets.

Dino Implementation 8 2016/4/5

Loop Hash Fact Fib Except Method Object Sieve Sort Stat. Random Thread Start Compile

Dino 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Python 416 2.2 156 483 9.0 7.8 6.0 54.6 9.4 3.6 34.6 190 26.3 3.9
Ruby 237 2.8 44.6 148 4.6 1.9 2.5 8.3 3.1 4.6 13.4 194 25.5 2.0
PyPy 23.7 0.5 0.6 68 0.5 0.3 0.1 6.9 1.2 1.5 1.3 76.5 22.1 21.3
JS 204 1.1 52.4 167 - - - 7.8 0.5 - 0.7 - 0.8 1.9
Scala 10.7 1.1 3.3 114 8.9 1.4 0.8 2.8 0.5 7.1 1.3 - 377 -

Table 2. Performance of Dino vs. performance of other language implementations on Intel Haswell. All execution times of benchmark
programs are given relative to the execution time of the corresponding Dino version.

Loop Hash Fact Fib Except Method Object Sieve Sort Stat. Random Thread Start Compile

Dino 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Python 222 0.5 68.8 1116 12.4 4.7 2.8 40.3 5.3 2.5 15.5 149 246 2.6
Ruby 170 2.8 32.3 542 6.0 1.7 1.4 8.5 3.7 3.8 13.1 118 655 1.6
JS 282 1.4 31.6 471 - - - 16.2 2.5 - 6.5 - 1.0 0.5

Table 3. Performance of Dino vs. performance of other language implementations on Applied Micro X-gene. All execution times of
benchmark programs are given relative to the execution time of the corresponding Dino version.

Loop Hash Fact Fib Except Method Object Sieve Sort Stat. Random Thread Start Compile

Dino 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Python 25.3 0.5 65.9 592 12.9 4.3 6.1 25.1 4.3 2.0 6.9 166 62.5 2.4
Ruby 17.6 1.7 43.0 390 20.0 1.6 3.1 7.6 4.2 5.2 11.4 62.8 46.1 1.5
JS 27.0 3.0 53.8 453 - - - 14.2 2.8 - 4.6 - 2.7 0.7

Table 4. Performance of Dino vs. performance of other language implementations on Power7. All execution times of benchmark programs
are given relative to the execution time of the corresponding Dino version.

that any JIT compiler written from scratch can achieve the same
level of portability.

A possible way to improve a GCC-based JIT compiler is to in-
vestigate which GCC optimizations actually improve the perfor-
mance of the C code generated by the JIT compiler. As described
earlier, type inference is essential, as GCC is not able to propagate
constants which represent operand types in a dynamic language

program, nor can it remove code for checking operand types25.
Some optimizations in GCC, e.g. loop invariant code motion, may
also not work as well as expected when applied to C code gener-
ated by a JIT compiler. This problem could be solved by improving
the optimizations in GCC or by implementing some additional byte

code level optimizations in the interpreter26.
Another way to improve a GCC-based JIT compiler could be

to find the right combination of GCC optimizations which is fast
enough but still considerably improves the performance of the
generated C code. Such a combination should aim to balance the
time of JIT compilation itself against the execution time of the
generated code. Some machine learning approaches could be used
in order to find the best combination of optimizations depending on
features of the generated code [CompilerDesign].

Still GCC-based JIT can be quite expensive for some targets
which have memory constraints or do not support files in mem-
ory. One such target is CYGWIN environment[Cygwin] where us-
ing GCC-based JIT results in a performance degradation in most
cases. A simple light-weight JIT implementation specialized for

25 Conditional constant propagation on C code generated by a JIT compiler
can be considered to be analogous to type inference on dynamic language
code [Morgan] [Muchnick].
26 Even if we would need to implement the majority of optimizations on
the byte code level, GCC will still be useful as a non-optimizing but highly
portable C compiler.

Dino could be a solution. Comparison of GCC-based JIT and the
light-weight JIT with different points of view (generated code per-
formance, efforts to implement, used resources, startup time etc)
would be quite an interesting topic for research.

There are also plans to develop Dino from a research language
into a language which could be widely used in practice. Features
planned for this purpose include type annotation, light-weight spe-
cialized JIT, native OS thread support for parallelism, rewritten
standard libraries, and a more convenient foreign function inter-
face. In addition to native support for parallelism, a more sophisti-
cated model could be provided for synchronization.

During the long history of the Dino programming language, a
lot of research has been done. Part of this research was described in
this article, including the effect of major implementation decisions
on performance, some tools which can be used to simplify the
implementation, and ways to implement a simple, portable, and
stable JIT.

We hope that the results reported in this article could help to
find ways to improve popular dynamic language implementations
to make them faster and more portable, using fewer developer
resources.

References

[Abdelrahman] B. Vitale and T.S. Abdelrahman. “Catenation and special-
ization for Tcl virtual machine performance”, Proc. of the Int’l Workshop

on Interpreters, Virtual Machines and Emulators, pp. 42-50, Washing-
ton, DC, June 2004.

[Appleby] A. Appleby. MurmurHash 2.0,
http://murmurhash.googlepages.com/

[Bell] J. Bell. “Threaded code”, Comm. ACM, vol. 16, no. 6, pp. 370-372,
1973.

Dino Implementation 9 2016/4/5

[Benchmarks] The Great Win32 Computer Language Shootout,
http://dada.perl.it/shootout/

[Casey] K. Casey, M. A. Ertl, and D. Gregg. “Optimizing indirect branch
prediction accuracy in virtual machine interpreters.”, ACM Transactions

on Programming Languages and Systems, vol. 29, no. 6, 2007.

[CompilerDesign] K. Vaswani. “Statistcial and Machine Learning Tech-
niques in Compiler Design”, “The Compiler Design Handbook: Opti-
mizations and Machine Code Generation”, Second Edition, CRC Press,
2007.

[Cygwin] https://www.cygwin.com/

[Ertl] M.A. Ertl, D. Gregg. “The behavior of efficient virtual machine in-
terpreters on modern architectures”, Euro-Par 2001 Parallel Processing,
pp. 403-413, 2001, Springer.

[GCH] R. Jones. “Garbage Collection Handbook: Art of Automatic
Memory Management”, 2011, Chapman and Hall/CRC.

[GCC] The GNU compiler collection, Labels as Val-

ues, https://gcc.gnu.org/onlinedocs/gcc-5.1.0/gcc/Labels-as-
Values.html#Labels-as-Values

[Lattner] Chris Lattner and Vikram Adve. LLVM: A compilation Frame-

work for Lifelong Program Analysis and Transformation, International
Symposium on Code Generation and Optimization, March 2004.

[Makarov] Vladimir Makarov, The Programming Language Dino,
https://github.com/dino-lang/dino

[Malcolm] David Malcolm, GCC JIT wiki page,
https://gcc.gnu.org/wiki/JIT

[Meteor] Description of meteor contest benchmark,
http://benchmarksgame.alioth.debian.org/u32/performance.php?test=meteor

[Morgan] Robert Morgan. “Building an Optimizing Compiler”, Digital
Press, 1998.

[Muchnick] S. Muchnick. “Advanced Compiler Design and Implementa-
tion”, Morgan Kaufmann, 1997.

[Poletto] M. Poletto and V. Sarkar, “Linear Scan Register Allocation”,
ACM Transactions on Programming Languages and Systems, 1999, vol.
21, no. 5, pp. 895-913.

[Sasada] K. Sasada. “YARV: yet another RubyVM: innovating the
ruby interpreter”, in Companion to the 20th annual ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and

applications, ACM, New York, NY, USA, pp. 158-159.

[Shaughnessy] Pat Shaughnessy. “Ruby Under a Microscope: An Illus-
trated Guide to Ruby Internals”, No Starch Press, 2013.

[Shi] Y. Shi, K. Casey, and M. Anton Ertl, and D. Gregg. “Virtual machine
showdown: Stack versus registers”. ACM Transactions on Architecture

and Code Optimization (TACO), Volume 4 Issue 4, January 2008 Article
No. 2.

Dino Implementation 10 2016/4/5

